
1

Anarchy in the Database
Survey and Evaluation of Database
Management System Extensibility

Abigale Kim
Carnegie Mellon University, TileDB Inc.
abigalekim0417@gmail.com

Collaborators
Andy Pavlo (pavlo@cs.cmu.edu)
Dave Andersen (dga@cs.cmu.edu)
Marco Slot (marco.slot@crunchydata.com)

mailto:abigalekim0417@gmail.com
mailto:pavlo@cs.cmu.edu
mailto:dga@cs.cmu.edu
mailto:marco.slot@crunchydata.com

What is extensibility?

● Extensibility: the capability of a database system to let custom software extend its
capabilities

● Extension: an instance of this software

2

History of extensibility

● Extensibility: 1970s
○ Ingres: Supported UDTs and UDFs

● Extensibility: 1980s
○ Starburst: extendible query processing
○ Exodus: modules (kernel libraries, storage manager, rule-based query optimizer) to help developers
○ Genesis: abstract interfaces filled in by developers

● PostgreSQL archaeology
○ 2007: planner hook added
○ 2008: execution hooks added
○ 2011: CREATE EXTENSION command supported
○ 2012 - now: extension development skyrocketed!

3

https://github.com/postgres/postgres/commit/604ffd280b955100e5fc24649ee4d42a6f3ebf35
https://github.com/postgres/postgres/commit/cd35e9d7468e8f86dd5a7d928707f4ba8cdae44d
https://www.postgresql.org/docs/release/9.1.0/

PostgreSQL extensibility is impactful in industry

4

Cloud offerings support many extensions

5

Many third party extensions

6

DBMS Number of Extensions

DuckDB 30

MySQL 47

Redis OSS 57

SQLite 61

PostgreSQL 375+

7

Distributed PostgreSQL (as
an extension)

auto_explain
(execution logging)

?
What happens when we combine extensions?

8

Distributed PostgreSQL (as
an extension)

auto_explain
(execution logging)

?
What happens when we combine extensions?

Research questions

● What design decisions caused conflicts like this (and similar)?
● How well-designed is DBMS extensibility?
● Can we design extensibility to not have these conflicts?
● What can we do to improve the design of DBMS extensibility?

9

Outline

● Motivation
● Survey
● Analysis
● Results
● Discussion

10

Survey goals

● No larger understanding of DBMS extensibility
● Organize and classify extensibility design decisions
● Better understand DBMS extensibility design

11

Solution: Create a taxonomy on DBMS extensibility!
Categorize existing systems using our taxonomy!

Survey method

● Examined five different DBMSs (PostgreSQL, MySQL, SQLite, DuckDB, Redis OSS)
○ Open source, more comprehensive support for extensibility

● Read extensibility implementation and extensions
● Focused on well-recognized extension code + DBMS code

12

For the sake of this presentation, weʼll focus on the PostgreSQL findings.
Ask me about the other DBMSs!

Types of extensibility

13

Types of extensibility pt. 1

● User Defined Types (UDTs)
○ Physical types with custom binary encoding and support functions

● User Defined Functions (UDFs)
○ Custom function that extends DBMSʼs functionality

● External Tables
○ Allow users to interact with data sources outside the DBMS

● Index Access Methods
○ Additional index implementations

● Catalog Modifications
○ Modify or access database metadata
○ DuckDB uses them as an external table

14

Types of extensibility pt. 2

● Client Authentication
○ Password validation, user privilege levels

● Parser Extensions
○ e.g. adding new syntax, query rewrite rules

● Query Processing Extensions
○ Planner, optimizer, executor

● Utility Commands
○ DDL commands, e.g. CREATE/DROP SCHEMA/DATABASE, user privileges, etc.

● Storage Manager Extensions
○ MySQL̓ s storage engines are a well known example

15

Types of extensibility in DBMSs

● 9/10 types of extensibility supported in PostgreSQL

16

Interface design decisions

● Extending vs. overriding host functionality
○ PostgreSQL supports both

● State modification (database state, system state, extension state)
○ PostgreSQL allows extensions to modify all three

● Protection
○ PostgreSQL has limited extension isolation and security
○ Superuser vs. not superuser extensions

17

Common system components

1. Background workers
2. Memory allocation mechanisms
3. Configuration options

a. Modifying postgresql.conf/pg_hba.conf, GUC variables

4. Custom concurrency control
○ Advisory locks

PostgreSQL has support for 4/4 system components

18

19

Developer
Ecosystem

Build
Infrastructure

Extension
Managers

Testing
Frameworks

pgrx

pg_tle

pgxs
pg_regress

pgTAP

Trunk

Comparison to other DBMSs
● Supports the most extensibility

mechanisms
○ Types of extensibility
○ Mechanisms for building extensibility
○ Building and testing infrastructure

● Similar design to MySQL
○ Support lots of extensibility via overriding

function pointers

● Redis OSS is the safest, only allows
command-extensibility using their DBMS

20

PostgreSQL survey takeaways

● PostgreSQL has a very flexible extensibility interface
○ Allows for both extending and overriding
○ Extensions can modify all state
○ PostgreSQL offers limited security and isolation for extensions

● PostgreSQL supports a variety of extensibility mechanisms
○ 9/10 identified types of extensibility (and more!)
○ All system components

● PostgreSQL has robust extension building and testing infrastructure
○ pgxs, pg_tle, pgrx
○ pg_regress for testing

21

Outline

● Motivation
● Survey
● Analysis
● Results
● Discussion

22

Revisiting Citus and auto_explain

● Two well known, frequently used extensions still have bugs when used together
● How common is this problem?
● If this problem is common, why (from a design perspective)?

23

Analysis framework

● Tests compatibility between different extensions
○ Compatibility: two extensions work as intended when installed together

● Collects information about extensions
○ Both general information analysis and source code analysis

● Goal: to understand factors that cause incompatibility between extensions

24

Framework logistics

● Postgres v15.3
● Tested on 114 extensions (one of the following)

○ contrib directory
○ AWS + Azure + Google Cloud extension offerings
○ 2000+ stars on Github

● Python + Bash scripts
● Utilizes pg_regress for running extension tests

25

Compatibility analysis

26

Information analysis

27

Source code analysis

28

Duplicate code

● Extensions copy code from PostgreSQL to use in their own extensions
○ Static functions that they canʼt call from core PostgreSQL but they want to use
○ Significant portions of complicated logic (e.g. switch statements)

● In our analysis: counted instances with more than 100 tokens
○ Tokens: Identifiers, constants, special keywords, special symbols

● Used PMD Copy-Paste Detector (CPD) tool

29

https://pmd.github.io/pmd/pmd_userdocs_cpd.html

Versioning

● PostgreSQL keeps a internal version macro PG_VERSION_NUM
● Extensions utilize this to support different logic for each version
● Results in overly complex, hard-to-read code
● PostgreSQL versions vary greatly from one another

30

Outline

● Motivation
● Survey
● Analysis
● Results
● Discussion

31

Analysis metrics

● How common is the incompatibility problem?
○ How often tests failed (in general and per extension)
○ # Pairs where tests failed/# Pairs where an extension was included = Extension failure rate

● What factors could contribute to higher incompatibility rates?
○ Components utilized (functions, types, access methods, external tables, client authentication, query

processing, utility commands)
○ Metrics on extensions copying source code
○ Metrics on extensions utilizing versioning

32

Compatibility analysis

● Recorded extension pair failures, not
specific tests failures

● Takeaway: Extension compatibility
is a common problem

33

Compatibility analysis histogram

34

● Measured extension
failure rate

● Takeaway: Most
extensions do not
produce conflicts, but
some produce a lot of
compatibility conflicts

Compatibility error messages

- Fun reasons they failed

35

Compatibility error messages

- Fun reasons they failed

36

Number of components

37

● 86.8% of extensions
incorporate UDFs

● Takeaway: Most
extensions utilize a
small number of
components

Copied PostgreSQL code

38

● 19% of extensions copy PostgreSQL code
● Takeaway: Extensions copying

PostgreSQL code is a common
phenomenon

Copied PostgreSQL code histogram

39

● Measured percentage of
extensionʼs C codebase
consisting of copied code

● Histogram consists of
extensions with > 0%
copied code

● Max: pageinspect (75.5%)
● Takeaway: Most

extension codebases do
not have lots of copied
code

Versioning code logic

40

● 45% utilize versioning code logic
● Takeaway: Extensions utilizing

versioning logic is a common
phenomenon.

Versioning code logic histogram

41

● Measured percentage of
LOC encapsulated in
versioning macros

● Max: hypopg (23.85%)
● Takeaway: Most donʼt

use versioning logic
often.

What is the relationship between
compatibility failure rates and extension
properties?

42

Connecting properties to incompatibility

● Ran T-paired test on incompatibility data with extension characteristics
● Found four properties with correlation:

○ Number of types of extensibility utilized
○ Had more than 500 or 750 lines of source code
○ Utilization of versioning logic
○ Usage of ProcessUtility_hook

43

Outline

● Motivation
● Survey
● Analysis
● Results
● Discussion

44

PostgreSQL: a double edged sword

● Other DBMSs (MySQL/MariaDB, DuckDB, SQLite) also support extensibility
● PostgreSQL̓ s extensibility ecosystem surpasses all in involvement

○ Very flexible interface via hooks
○ Lots of internal support for extensibility
○ Internal building and testing infrastructure

● Lots of safety and maintenance concerns
○ No guarantees that PostgreSQL extensions work with one another
○ Versioning logic to get PostgreSQL extensions working with multiple versions

45

Suggestion: extension manager

● PostgreSQL does not have an extension manager
● Problems an extension manager could solve:

○ Extensions are responsible for calling other extensionsʼ hooks
○ Extensions need to be loaded in certain orders to work properly
○ Streamline disabling and enabling extensions
○ Matching extension installations to versions

46

Suggestion: compatibility tool

● Users typically utilize > 1 extension on DB instances
● Smoke tests (or more rigorous tests) of extension compatibility are useful
● Tool helps find undiscovered bugs in your + other extensions
● My tool showed many compatibility errors on established PostgreSQL extensions

47

Takeaways

● Survey findings: PostgreSQL̓ s flexible interface, comprehensive support, and
usability results in significantly more prolific ecosystem

● Analysis findings: Extensions are commonly incompatible with each other, caused
by usage of ProcessUtility_hook and versioning logic

● Suggestions: Extension manager, analysis tools for PostgreSQL

Github Repo: Analysis Framework Tool

Email: abigalekim0417@gmail.com

48

https://github.com/cmu-db/pgext-analyzer
mailto:abigalekim0417@gmail.com

Appendix: pg_regress

● pg_regress validates by text output
● Some errors in my testing framework are caused by different outputs, but the

extensions are both working as intended
● For smoke test purposes a different validation system for pg_regress is necessary

49

Appendix: Acknowledgements

50

Thankful to Andy, Marco, Dave and the CMU DB
group for helping me out with this presentation
and research!

