DATABASE OF

DEATH

OEATH

e prrpem——

mailto:abigalekim0417@gmail.com
mailto:pavlo@cs.cmu.edu
mailto:dga@cs.cmu.edu
mailto:marco.slot@crunchydata.com

What is extensibility?

e Extensibility: the capability of a database system to let custom software extend its
capabilities
e Extension: aninstance of this software

History of extensibility

e Extensibility: 1970s
o Ingres: Supported UDTs and UDFs

e Extensibility: 1980s
o Starburst: extendible query processing
o Exodus: modules (kernel libraries, storage manager, rule-based query optimizer) to help developers
o Genesis: abstract interfaces filled in by developers

e PostgreSQL archaeology

o 2007: planner hook added

o 2008: execution hooks added

© 2011: CREATE EXTENSION command supported
o 2012 - now: extension development skyrocketed!

https://github.com/postgres/postgres/commit/604ffd280b955100e5fc24649ee4d42a6f3ebf35
https://github.com/postgres/postgres/commit/cd35e9d7468e8f86dd5a7d928707f4ba8cdae44d
https://www.postgresql.org/docs/release/9.1.0/

PostgreSQL extensibility is impactful in industry

@crunchydctc @*pganalyze W ParadeDB

NEON PstGIS & sTeampipe
' N||e ®" tembo

@ Timescale

@ citusdata N\ Tablespace
NV xqta Omnigres ' Su pa base

Postgres Application Platform

Cloud offerings support many extensions

D A

Google Cloud — AZU e

Many third party extensions

DBMS Number of Extensions
DuckDB 30
MySQL 47
Redis OSS 57
SQLite 61

PostgreSQL 375+

What happens when we combine extensions?

Distributed PostgreSQL (as auto_explain
an extension) (execution logging)

(@ citusdata uj ' -?

SQL Error [XX000]: ERROR: cache lookup failed for type O with pg auto explain

#7596

OOpen StepanYankevych opened this issue 2 weeks ago - 2 comments

What happens when we combine extensions?

Distributed PostgreSQL
an extension)

SQL Error [XX000]: ERR(” 1e lookup fan ‘vpe O with pg auto explain

] /r—t

Cétam v sleasrsv s noanad thic icc a? woaolke am r mmeantc
(2 Open StepanYankevych opened this issue 2 weeks ago - 2 comment

Research questions

What design decisions caused conflicts like this (and similar)?
How well-designed is DBMS extensibility?

Can we design extensibility to not have these conflicts?

What can we do to improve the design of DBMS extensibility?

Outline

Motivation
Survey
Analysis
Results
Discussion

10

Survey goals

e No larger understanding of DBMS extensibility
e Organize and classify extensibility design decisions
e Better understand DBMS extensibility design

Solution: Create a taxonomy on DBMS extensibility!
Categorize existing systems using our taxonomy!

11

Survey method

e Examined five different DBMSs (PostgreSQL, MySQL, SQLite, DuckDB, Redis OSS)

o Open source, more comprehensive support for extensibility
e Read extensibility implementation and extensions

e Focused on well-recognized extension code + DBMS code

For the sake of this presentation, we’ll focus on the PostgreSQL findings.
Ask me about the other DBMSs!

12

Types of extensibility

Client Auth Client Auth Extensions
Parser Parser Extensions
User-Defined Types
User-Defined Functions Catalog Binder
Catalog Extensions - .
Planner Query Processing

R Extensions

External Tables
Utility Commands

Optimizer

1 4 —

Executor Engine

Storage Manager Extensions
Index Access Methods

Storage Manager

Internal DBMS Architecture

Types of extensibility pt. 1

User Defined Types (UDTs)
o Physical types with custom binary encoding and support functions
User Defined Functions (UDFs)
o Custom function that extends DBMS’s functionality
External Tables
o Allow users to interact with data sources outside the DBMS
Index Access Methods
o Additional index implementations
Catalog Modifications

o Modify or access database metadata
o DuckDB uses them as an external table

14

Types of extensibility pt. 2

e C(Client Authentication

o Password validation, user privilege levels
e Parser Extensions

o e.g.adding new syntax, query rewrite rules

e Query Processing Extensions

o Planner, optimizer, executor
e Utility Commands

o DDL commands, e.g. CREATE/DROP SCHEMA/DATABASE, user privileges, etc.
e Storage Manager Extensions

o MySQL’s storage engines are a well known example

15

Types of extensibility in DBMSs

e 9/10 types of extensibility supported in PostgreSQL

PostgreSQL DuckDB MySQL MariaDB SQLite Redis
User-defined Functions Yes Yes Yes Yes Yes Yes
User-defined Types Yes Yes No No No Yes
External Tables Yes Yes Yes Yes Yes Yes
Utility Commands Yes No No No No No
Parser No Yes Yes Yes No No
Query Processing Yes Yes No No No No
Storage Engine Yes Yes Yes Yes Yes No
Index Access Methods Yes No No No No No
Client Authentication Yes No Yes Yes No No
Catalog Yes Yes Yes Yes No No
Number of Extensions 375+ 30+ 47+ 65+ 61+ 57+

Interface design decisions

e Extendingvs. overriding host functionality
o PostgreSQL supports both

e State modification (database state, system state, extension state)
o PostgreSQL allows extensions to modify all three

e Protection

o PostgreSQL has limited extension isolation and security
o Superuser vs. not superuser extensions

17

Common system components

1. Background workers
Memory allocation mechanisms

3. Configuration options
a. Modifying postgresql.conf/pg_hba.conf, GUC variables

4, Custom concurrency control
o Advisory locks

PostgreSQL has support for 4/4 system components

18

pg_regress

Build
Infrastructure

Testing

Frameworks \ oTAP

Developer
Ecosystem

3 | S dbdev
A PostgreSQL Extension Network EXte n S I O n
Managers

| pgr¢man

19

Comparison to other DBMSs

Supports the most extensibility

mechanisms

o Types of extensibility
o Mechanisms for building extensibility
o Building and testing infrastructure

Similar design to MySQL
o Support lots of extensibility via overriding
function pointers

Redis OSS is the safest, only allows
command-extensibility using their DBMS

Flexible
A
PostgreSQL
MySQL
DuckDB
Unsafe <
SQlite

\

y

Restrictive

> Safe

Redis OSS

20

PostgreSQL survey takeaways

e PostgreSQL has a very flexible extensibility interface
o Allows for both extending and overriding
o Extensions can modify all state
o PostgreSQL offers limited security and isolation for extensions
e PostgreSQL supports a variety of extensibility mechanisms
o 9/10 identified types of extensibility (and more!)
o All system components
e PostgreSQL has robust extension building and testing infrastructure

o pgxs, pg_tle, pgrx
o pg_regress for testing

21

Outline

Motivation
Survey
Analysis
Results
Discussion

22

Revisiting Citus and auto_explain

e Two well known, frequently used extensions still have bugs when used together
e How common is this problem?
e |If this problem is common, why (from a design perspective)?

23

Analysis framework

e Tests compatibility between different extensions
o Compatibility: two extensions work as intended when installed together

e Collectsinformation about extensions
o Both general information analysis and source code analysis

e Goal: to understand factors that cause incompatibility between extensions

24

Framework logistics

e Postgresv15.3

e Tested on 114 extensions (one of the following)

o contribdirectory
o AWS + Azure + Google Cloud extension offerings
o 2000+ stars on Github

e Python + Bash scripts
e Utilizes pg_regress for running extension tests

25

Compatibility analysis

Extension
Info DB

Input: List of
Extensions

Generate pairs of
extensions (a,b)

4

gxtension 0

Download and
install a and b

y

Run unit tests on a
with b installed

y

Run unit tests on b
with a installed

v

Consolidate results

into CSV

foreach

(a,b)

26

Information analysis

=

Extension
Info DB

Input: List of
Extensions

Gather Source

Mv Code

N

Examine C code for Examine SQL code
keywords (e.g. hook for keywords (e.g.
declarations) CREATE...)

~N

Consolidate results
into CSV

27

Source code analysis

=

Extension
Info DB

Input: List of
Extensions
/EW" Gather C Code

RN

Duplicate

PostgreSQL code
analysis (using CPD)

Versioning code
analysis (find

PG_VERSION_NUM)

~N

Consolidate results

into CSV

28

Duplicate code

e Extensions copy code from PostgreSQL to use in their own extensions
o Static functions that they can’t call from core PostgreSQL but they want to use
o Significant portions of complicated logic (e.g. switch statements)

e Inouranalysis: counted instances with more than 100 tokens
o Tokens: Identifiers, constants, special keywords, special symbols

e Used PMD Copy-Paste Detector (CPD) tool

core_postgresql.c extension.c
static void foo (void) { void foo(void) {
} }

int a(void) {

é°<.>().;

}

29

https://pmd.github.io/pmd/pmd_userdocs_cpd.html

Versioning

PostgreSQL keeps a internal version macro PG_VERSION_NUM
Extensions utilize this to support different logic for each version
Results in overly complex, hard-to-read code

PostgreSQL versions vary greatly from one another

#if PG_VERSION NUM > 14

#else

30

Outline

Motivation
Survey
Analysis
Results
Discussion

31

Analysis metrics

e How common is the incompatibility problem?
o How often tests failed (in general and per extension)
o #Pairs where tests failed/# Pairs where an extension was included = Extension failure rate
e What factors could contribute to higher incompatibility rates?
o Components utilized (functions, types, access methods, external tables, client authentication, query
processing, utility commands)
o Metrics on extensions copying source code
o Metrics on extensions utilizing versioning

32

Compatibility analysis

17% pairs
failed

83% pairs passed

Recorded extension pair failures, not

specific tests failures
Takeaway: Extension compatibility
is a common problem

33

Compatibility analysis histogram

50

40

Number of Extensions

O 8 O 8 O O O O O O & O
T L OO0 .0 OO O .0 OO O .OQ
O R 0T R PR AR A P P

Compatibility Test Failure Rate

Measured extension
failure rate

Takeaway: Most
extensions do not
produce conflicts, but
some produce a lot of
compatibility conflicts

34

Compatibility error messages

- Fun reasons they failed

2023-07-25 05:04:55.945 UTC [687073] STATEMENT: truncate table t;

2023-07-25 05:04:56.945 UTC [687074] ERROR: deadlock detected

2023-07-25 05:04:56.945 UTC [687074] DETAIL: Process 687074 waits for AccessShareLock on relation 17466 of database 16384; blocked by process 687073.
Process 687073 waits for AccessExclusivelock on relation 17471 of database 16384; blocked by process 687074.
Process 687074: truncate
Process 687073: truncate table t;

2023-07-25 05:04:56.945 UTC [687074] HINT: See server log for query details.

INFO: operator family "gin_bigm_ops" of access method gin contains function gin_bigm_compare_partial(text,text,smallint,internal) with wrong signature for support number 5
amname | opcname
________ e
| gin_bigm_ops
(1 row)

2023-07-26 11:57:04.922 UTC [2087903] FATAL: requested tranche is not registered
2023-07-26 11:57:04.925 UTC [2087903] LOG: database system is shut down

35

Compatibility error messages

- Fun reasons they failed

2023-07-25 05:04:55.945 UTC [687073] STATEMENT: truncate table t;
2023-07-25 05:04:56.945 UTC [687074] ERROR: deadlock detected

2023-07-25 05:04:56.945 UTC [687074] DETAIL: Process 687074 waits for AccessShareLock on relation 17466 of database 16384; blocked by process 687073.

Process 687073 waits for AccessExclusivelock on relation 17471 of database 16384; blocked by process 687074.
Process 687074: truncate

—— Create first test user

CREATE USER userl password '‘'password’;

ERROR: password must contain both letters and nonletters

ALTER ROLE userl SET pgaudit.log = 'ddl, ROLE';
2023-07-26 11:57:04.925 UTC [2087903] LOG: database system is shut down

36

Number of components

Number of Extensions

50

40

30

20

10

3 4

Number of Components

86.8% of extensions
incorporate UDFs
Takeaway: Most
extensions utilize a
small number of
components

37

Copied PostgreSQL code

e 19% of extensions copy PostgreSQL code
e Takeaway: Extensions copying
19% PostgreSQL code is a common
phenomenon

81%

38

Copied PostgreSQL code histogram
15 e Measured percentage of

extension’s C codebase
consisting of copied code

e Histogram consists of
extensions with > 0%
copied code

e Max: pageinspect (75.5%)

e Takeaway: Most

(()).00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 extension codebases do

not have lots of copied

code

10

Number of Extensions

Percentage of Copied Postgres Code in Codebase

Versioning code logic

45%

55%

45% utilize versioning code logic
Takeaway: Extensions utilizing
versioning logic is a common
phenomenon.

40

Versioning code logic histogram

Number of Extensions

40

5.00 10.00 15.00 20.00

Percentage of Encapsulated Versioning Code in Codebase

25.00

Measured percentage of
LOC encapsulated in
versioning macros

Max: hypopg (23.85%)
Takeaway: Most don’t
use versioning logic
often.

41

What is the relationship between
compatibility failure rates and extension
properties?

Connecting properties to incompatibility

e Ran T-paired test on incompatibility data with extension characteristics

e Found four properties with correlation:
o Number of types of extensibility utilized
Had more than 500 or 750 lines of source code
Utilization of versioning logic
Usage of ProcessUtility_hook

o O O

Outline

Motivation
Survey
Analysis
Results
Discussion

44

PostgreSQL: a double edged sword

e Other DBMSs (MySQL/MariaDB, DuckDB, SQLite) also support extensibility

e PostgreSQL’s extensibility ecosystem surpasses all in involvement
o Very flexible interface via hooks
o Lots of internal support for extensibility
o Internal building and testing infrastructure

e Lots of safety and maintenance concerns

o No guarantees that PostgreSQL extensions work with one another
o Versioning logic to get PostgreSQL extensions working with multiple versions

45

Suggestion: extension manager

e PostgreSQL does not have an extension manager
e Problems an extension manager could solve:

(@)

(@)
(@)
(@)

Extensions are responsible for calling other extensions’ hooks
Extensions need to be loaded in certain orders to work properly
Streamline disabling and enabling extensions

Matching extension installations to versions

46

Suggestion: compatibility tool

Users typically utilize > 1 extension on DB instances

Smoke tests (or more rigorous tests) of extension compatibility are useful

Tool helps find undiscovered bugs in your + other extensions

My tool showed many compatibility errors on established PostgreSQL extensions

47

Takeaways

e Survey findings: PostgreSQL’s flexible interface, comprehensive support, and
usability results in significantly more prolific ecosystem

e Analysis findings: Extensions are commonly incompatible with each other, caused
by usage of ProcessUtility_hook and versioning logic

e Suggestions: Extension manager, analysis tools for PostgreSQL

Github Repo: Analysis Framework Tool

Email: abigalekim0417@gmail.com

48

https://github.com/cmu-db/pgext-analyzer
mailto:abigalekim0417@gmail.com

Appendix: pg_regress

e pg_regress validates by text output

e Some errors in my testing framework are caused by different outputs, but the
extensions are both working as intended

e For smoke test purposes a different validation system for pg_regress is necessary

49

Appendix: Acknowledgements

‘ | i Thankful to Andy, Marco, Dave and the CMU DB
T group for helping me out with this presentation
and research!

